A-level

 PHYSICS(7408/3BD)

Paper 3 - Section B (Turning points in Physics)

Specimen 2014
Morning
Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil
- a ruler
- a calculator
- a data and formulae booklet
- a question paper / answer book for Section A.

Instructions

- Answer all questions.
- Show all your working.
- The total time for both sections of this paper is 2 hours.

Information

- The maximum mark for this section is 35 .

Section B
Answer all questions in this section.

0	1

In an experiment to measure the charge of the electron, a spherical charged oil droplet of unknown mass is observed between two horizontal parallel metal plates, as shown in Figure 1.

| 0 | 1 |
| :--- | :--- |. \square 1

The droplet falls vertically at its terminal speed when the potential difference (pd) between the plates is zero.

A droplet of radius r falls at its terminal velocity, v.
Derive an expression for r in terms of v, η, ρ and g, where η is the viscosity of air and ρ is the density of the oil droplet.

| 0 | 1 |
| :--- | :--- | 3

A potential difference (pd) is applied across the plates and is adjusted until the droplet is held stationary. The two horizontal parallel metal plates are 15.0 mm apart. The mass of the droplet is $3.4 \times 10^{-15} \mathrm{~kg}$.

The droplet is held stationary when the pd across the plates is 1560 V .
Calculate the charge of the oil droplet.

$$
\begin{aligned}
& E=\frac{F}{Q}=\frac{V}{d} \Rightarrow F=\frac{Q V}{d}=m g J^{[1 \text { manes }]} \\
& Q=\frac{m a d}{V}=\frac{3.4 \times 10^{-15} 9.81 \times 1.5 \times 10^{-2}}{1560} \\
& 3.207 \times 10^{-19} \mathrm{C} \quad \text { charge }=3.2 \times 10^{-19} \mathrm{~V}
\end{aligned}
$$

0	1

\square

A student carries out Millikan's oil drop experiment and obtains the following results for the charges on the oil drops that were investigated.

$$
\begin{array}{ccc}
-9.6 \times 10^{-19} \mathrm{C} & -12.8 \times 10^{-19} \mathrm{C} & -6.4 \times 10^{-19} \mathrm{C} \\
=6 e^{\prime} & =8 e^{2} & =4 e^{2}
\end{array}
$$

Discuss the extent to which the student's results support Millikan's conclusion and how the student's conclusion should be different.
[3 marks]
-Millikan's condusion was that the charge on an electron is $-1.6 \times 10^{-19} \mathrm{C}$
-The student's results are all integer multiples of $-1.6 \times 10^{-1} \mathrm{C}$ J

0	2

Figure 2 shows a narrow beam of electrons produced by attracting the electrons emitted from a filament wire, to a positively charged metal plate which has a small hole in it.

Figure 2

1
Explain why an electric current through the filament wire causes the wire to emit electrons.

\square
2
Explain why the filament wire and the metal plates must be in an evacuated tube.

- The electrons would collide with gas modules V

| $\mathbf{0}$ | $\mathbf{2} .3$ | $\mathbf{3}$ The potential difference between the filament wire and the metal plate is |
| :--- | :--- | :--- | 4800 V.

Calculate the de Broglie wavelength of the elections in the beam.

The beam is directed at a thin metal foil between the metal plate and a fluorescent screen at the end of the tube, as shown in Figure 3. The electrons that pass through the metal foil cause a pattern of concentric rings on the screen.

Figure 3

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{4}$ The potential difference between the filament and the metal plate is |
| :--- | :--- | :--- | :--- | increased. State and explain the effect this has on the diameter of the rings.

(1) $e V=\frac{1}{2} m v^{2}$
(2) $\lambda=\frac{h}{m v}$
(3) $n \lambda=d \sin \theta$

| $\mathbf{0}$ | $\mathbf{3}$ Maxwell's theory suggested the existence of electromagnetic waves that |
| :--- | :--- | travel at a speed of $\sqrt{\frac{1}{\varepsilon_{0} \mu_{0}}}$.

Hertz later discovered radio waves and performed experiments to investigate their properties.

Figure 4 shows a radio wave transmitter and a detector. The wave is transmitted by a dipole aerial. The detector consists of a metal loop connected to a meter.

Figure 4

metal loop

03 . \square 1 Explain how the detection of the wave by the loop demonstrates the magnetic nature of the radio waves.

- We need a changing magetece fuse in the lap to gevertit an e.m.f. V. - The wave is a causing this tapers, so tenet have magmatic nature

2 Explain how the electric nature of the waves emitted by the dipole could be demonstrated.
Place another diode near the transmitter, aligned with it. The dipole can detect an electric field. If the electric field changes, the wave must have an electric field. V

Hertz used an arrangement like that shown in Figure 4 to determine the speed of radio waves.
[Describe how the speed was determined.] [Go on to discuss how the experiments of Hertz confirmed Maxwell's prediction] and the [experimental evidence that suggests that light is also an electromagnetic wave.]
Determining Speed

By measuring the distance between nodes (or antinodes) to find the wavelength, we can make substitutions into $v=f l$ with a known frequency to find the wave speed

Supporting Maxwell's Prediction

- Maxwell's result came from a prediction around electromagnetic waves

$$
\cdot v=\sqrt{\frac{1}{\varepsilon_{0} \mu_{0}}}=\sqrt{\frac{1}{8.85 \times 10^{-12} \times 1.26 \times 10^{-6}}}=2.99 \times 10^{8} \mathrm{~ms}^{-1}
$$

- Measured speed is the same as Maxwell's predicted speed

Experimental Evidence

- Speed of the disc is increased until the lift is no langer seen. At this point, light is bladed by a tooth where a gap initially was.
- Measured speed from Fizeau's experiment is simitar to Marwdl's predicted speed, which suggests that light is also an electromagnetic wave.

| $\mathbf{0}$ | $\mathbf{4}$ One of the two postulates of Einstein's theory of special relativity is that the |
| :--- | :--- | :--- | speed of light in free space is invariant.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$	Explain what is meant by this postulate.

\qquad

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$	State the other postulate.

[1 mark]
Laws of physios are the same in any
inertial frame
\qquad
 frame of reference. A beam of π mesons travel in a straight line at a speed of 0.95 c past the two detectors, as shown in Figure 5.

Calculate the time taken, in the frame of reference of the observer, for a π meson to travel between the two detectors.

$$
\begin{aligned}
\text { speed } & =\frac{\text { distance }}{\text { time }} \text { time }=\frac{\text { distance }}{\text { speed }} \\
t & =\frac{34}{0.95 \times 3.0 \times 10^{8}}=1.193 \times 10^{-7} \mathrm{~s} \simeq 1.2 \times 10^{-7} \mathrm{~s}
\end{aligned}
$$

$$
\text { time }=\frac{1.2 \times 10^{-7} \mathrm{~s}}{}
$$

| 0 | 4 |
| :--- | :--- | 4 π mesons are unstable and decay with a half-life of 18 ns . It is found in experiments that approximately 75% of the π mesons that pass the first detector decay before reaching the second detector.

Show how this provides evidence to support the theory of special relativity. In your answer compare the percentage expected by the laboratory observer with and without application of the theory of special relativity.

$$
0 \text { doppedto } 25 \%
$$

[5 marks]
The number of mesons has halved twice, so two half-lives have passed in the observer's frame'

$$
\begin{aligned}
t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}{ }^{j}=\frac{18}{\sqrt{1-0.95^{2}}} & =57.65 \mathrm{~ns} \\
& \simeq 58 \mathrm{~ns}
\end{aligned}
$$

\Rightarrow Approximately half of nO ns
$\frac{120}{18}=6.7$, so more than 6 half-ives have passed if there is us special relativity

$$
\left(\frac{1}{2}\right)^{6.7}=9.6 \times 10^{-3} \simeq 10 \%
$$

So 90% of the muons should have decayed without special relativity.

